Molar Quantitation of Hepatic Metabolites Zn Vivo in Proton-decoupled, Nuclear Overhauser Effect Enhanced 31P
نویسنده
چکیده
Proton decoupling and nuclear Overhauser effect (NOE) enhancement significantly improve the signal-to-noise ratio and enhance resolution of metabolites in in vivo 31P MRS. We obtained proton-decoupled, NOE-enhanced, phospholipid-saturated 31P spectra localized to defined regions within the normal liver using three-dimensional chemical shift imaging. Proton-decoupling resulted in the resolution of two major peaks in the phosphomonoester (PME) region, three peaks in the phosphodiester (PDE) region and a diphosphodiester peak. In order to obtain molar quantitation, we measured the NOE of all hepatic phosphorus resonances, and we corrected for saturation effects by measuring hepatic metabolite TI using the variable nutation angle method with phase-cycled, B,independent rotation, adiabatic pulses. After corrections for saturation effects, NOE enhancement, B , variations and point spread effects, the following mean concentrations (mmol/l of liver) (kSD) were obtained:
منابع مشابه
Metabolic characterization of human soft tissue sarcomas in vivo and in vitro using proton-decoupled phosphorus magnetic resonance spectroscopy.
We applied 1H-decoupling and nuclear Overhauser enhancement to obtain well-resolved 31P magnetic resonance spectra accurately localized to 20 soft tissue sarcomas in vivo, using three-dimensional chemical shift imaging. Fifteen spectra had large phosphomonoester signals (21% of total phosphorus) that contained high amounts of phosphoethanolamine (compared to those of phosphocholine) but no sign...
متن کاملMetabolic characterization of human non-Hodgkin's lymphomas in vivo with the use of proton-decoupled phosphorus magnetic resonance spectroscopy.
Development of biological and clinical uses of in vivo 31P magnetic resonance spectroscopy has been hampered by poor anatomic localization of spectra and poor resolution of overlapping signals within phosphomonoester and phosphodiester regions of the spectrum. We applied 1H-decoupling and nuclear Overhauser enhancement to improve resolution of 31P magnetic resonance spectra accurately localized...
متن کاملDynamic structure of whole cells probed by nuclear Overhauser enhanced nitrogen-15 nuclear magnetic resonance spectroscopy.
The proton-decoupled 15N Fourier transform nuclear magnetic resonance (NMR) spectra of 15N-enriched Escherichia coli, Bacillus licheniformis, baker's yeast, and Friend leukemic cells were obtained. The 15N NMR spectra of whole cells displayed 15N resonances originating from (i) protein backbones with lysine, arginine, and histidine side chains, (ii) ribonucleic acids, (iii) peptidoglycan, and (...
متن کاملConformational analysis of r(CGCGCG) in aqueous solution: an A-type double helical conformation studied by two-dimensional nuclear Overhauser effect spectroscopy.
The conformation of the hexanucleoside pentaphosphate r( CGCGCG ) in aqueous solution was studied by circular dichroism, 1H- and 31P-NMR spectroscopy. The base-, H1'- and H2'-proton resonances were assigned by means of 2D-NOE spectroscopy. The base- and H1'-proton chemical shifts were studied as a function of temperature. Proton-proton distances are computed in A- and A'-RNA as well as in A-, B...
متن کاملImaging amide proton transfer and nuclear overhauser enhancement using chemical exchange rotation transfer (CERT).
PURPOSE This study investigates amide proton transfer (APT) and nuclear overhauser enhancement (NOE) in phantoms and 9L tumors in rat brains at 9.4 Tesla, using a recently developed method that can isolate different contributions to exchange. METHODS Chemical exchange rotation transfer (CERT) was used to quantify APT and NOEs through subtraction of signals acquired at two irradiation flip ang...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005